CSCI 210: Computer Architecture Lecture 22: Floating Point

Stephen Checkoway Oberlin College Nov. 29, 2021 Slides from Cynthia Taylor

Announcements

• Problem Set 7 due Friday

• Lab 6 due Sunday (it'll be up tonight)

• Office Hours tomorrow 13:30 – 14:30

Review

• Unsigned 32-bit integers let us represent 0 to $2^{32} - 1$

• Signed 32-bit integers let us represent – 2^{31} to 2^{31} – 1

• 32-bit floating point numbers let us represent a wider range of values: larger, smaller, fractional

• 1 bit for sign s (1 = negative, 0 = positive)

• 8 bits for exponent e

• 0 bits for implicit leading 1 (called the "hidden bit")

• 23 bits for significand (without hidden bit)/fraction/mantissa x

Want To Make Sorting Easy

- Can easily tell if number is positive or negative
 - Just check MSB bit
- Exponent is in higher magnitude bits than the fraction
 - Numbers with higher values will look bigger

Problem with Two's Compliment

- Solution: Get rid of negative exponents!
 - We can represent 2⁸ = 256 numbers: normal exponents -126 to 127 and two special values for zero, infinity, (and NaN and subnormals)
 - Add 127 to value of exponent to encode it, subtract 127 to decode

• 1 bit for sign s (1 = negative, 0 = positive)

• 8 bits for exponent e + 127

• 0 bits for implicit leading 1 (called the "hidden bit")

• 23 bits for significand (without hidden bit)/fraction/mantissa x

1.00000001 * 2⁷ in Floating Point

- B. 0 00000111 1000000010000000000000

- E. None of the above

How Can We Represent 0 in Floating Point (as described so far)?

- D. More than one of the above
- E. We can't represent 0

Special Cases

Object	Exponent	Significand
Zero	0	0
Subnormal	0	Nonzero
Infinity	255	0
NaN	255	Nonzero

- Subnormal number: Numbers with magnitude smaller than 2⁻¹²⁶
 They have an implicit leading 0 bit
- NaN: Not a Number. Results from 0/0, $0 * \infty$, $(+\infty) + (-\infty)$, etc.

Overflow/underflow

- Overflow happens when a positive exponent becomes too large to fit in the exponent field
- Underflow happens when a negative exponent becomes too large (in magnitude) to fit in the exponent field
- One way to reduce the chance of underflow or overflow is to offer another format that has a larger exponent field
 - Double precision takes two MIPS words

Double precision in MIPS

s E (e	exponent)	F (fraction)
1 bit 11 bits 20 bits		20 bits
F (fraction continued)		
32 bits		

Adding

- Add together 2.34 * 10³ and 4.56 * 10⁵
- Normalize so both have the larger exponent
 - $0.0234*10^5 + 4.56*10^5$
- Add significands taking sign of numbers into account - 4.5834 * 10⁵
- Normalize to a single leading digit

- 4.5834 * 10⁵

$1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2}$

- A. $0.001_2 \times 2^{-1}$
- B. $1.111_2 \times 2^{-1}$
- C. $1.011_2 \times 2^{-2}$
- D. $1.000_2 \times 2^{-4}$
- E. None of the above

What problems could we run into doing this in binary?

- A. Added fraction could be longer than 23 bits
- B. Normalized exponent could be greater than 127 or less than -126
- C. Shifting fraction to match largest exponent could take more than 23 bits
- D. More than one of the above

Floats in higher-level languages

- C, Java: float, double
- JavaScript: numbers are always 64-bit double precision
- Rust: f32, f64

 Sometimes intermediate values (e.g., x*y in x*y + z) may be doubles (or larger types!) even when the inputs are all floats

FP Adder Hardware

• Much more complex than integer adder

- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions

• FP adder usually takes several cycles

FP Adder Hardware

Multiplication

- Multiply 2.34 * 10³ and 4.56 * 10⁵
- Add together exponents
 10⁸
- Multiply fractions (with appropriate signs)
 10.6704 * 10⁸
- Normalize
 - 1.06704 * 10⁹

 $1.000_{2} \times 2^{-1} \times -1.110_{2} \times 2^{-2}$

A. $-1.110_2 \times 2^{-1}$

B. $-1.110_2 \times 2^{-2}$

- C. $-1.110_2 \times 2^{-3}$
- D. $-1.110_2 \times 2^1$

What problems could we run into doing this in binary floating point?

A. Adding bias in exponent in twice

B. Shifted exponent could be greater than 127 or less than -126

C. Multiplied fraction could be longer than 23 bit

D. More than one of the above

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
- FP load and store instructions
 - lwc1, ldc1, swc1, sdc1
 - e.g., ldc1 \$f8, 32(\$sp)
 - Psuedoinstructions are easier to read: l.s, l.d, s.s, s.d

FP Instructions in MIPS

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.s
 - e.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic (operates on paired registers)
 - add.d, sub.d, mul.d, div.d
 - e.g., mul.d \$f4, \$f4, \$f6

Reading

• Next Lecture: Floating Point/Performance

• Problem Set 7