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Announcements

* Problem Set 7 due Friday

* Lab 6 due Sunday (it’ll be up tonight)

e Office Hours tomorrow 13:30—-14:30



Review

* Unsigned 32-bit integers let us represent 0 to 23— 1
* Signed 32-bit integers let us represent — 231 to 231 -1

e 32-bit floating point numbers let us represent a wider range of
values: larger, smaller, fractional



(-1)° * 1.x * 2¢
1 bit for sign s (1 = negative, O = positive)
8 bits for exponent e

0 bits for implicit leading 1 (called the “hidden bit”)

23 bits for significand (without hidden bit)/fraction/mantissa x

sign exponent (8 bits) fraction (23 bits)
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Want To Make Sorting Easy

* Can easily tell if number is positive or negative
— Just check MSB bit

* Exponent is in higher magnitude bits than the fraction
— Numbers with higher values will look bigger
— 000000111 10000000000000000000000 = 1.1 * 27/
— 0 00001000 10000000000000000000000 = 1.1 * 28



Problem with Two’s Compliment

0 00000111 10000000000000000000000 = 1.1 * 2/
0 00001000 10000000000000000000000 = 1.1 * 28
011111000 10000000000000000000000 = 1.1 * 28

Solution: Get rid of negative exponents!

— We can represent 28 = 256 numbers: normal exponents -126 to 127
and two special values for zero, infinity, (and NaN and subnormals)

— Add 127 to value of exponent to encode it, subtract 127 to decode



(-1)s * 1.x * 2¢
1 bit for sign s (1 = negative, O = positive)
8 bits for exponente + 127

0 bits for implicit leading 1 (called the “hidden bit”)

23 bits for significand (without hidden bit)/fraction/mantissa x

sign exponent (8 bits) fraction (23 bits)
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1.000000001 * 27 in Floating Point

. 000000111 00000000100000000000000

. 000000111 10000000010000000000000

. 010000110 00000000100000000000000

. 010000110 10000000010000000000000

. None of the above



How Can We Represent O in Floating Point (as
described so far)?
. 000000000 00000000000000000000000

. 001111111 00000000000000000000000

.1 00000000 00000000000000000000000

. More than one of the above

. We can’t represent O



Special Cases

Object _____Exponent ___Significand

Zero 0 0
Subnormal 0 Nonzero
Infinity 255 0
NaN 255 Nonzero

* Subnormal number: Numbers with magnitude smaller than 212
— They have an implicit leading O bit

 NaN: Not a Number. Results from 0/0, 0 * oo, (+o0) + (—o°), etc.



Overflow/underflow

* Overflow happens when a positive exponent becomes too
arge to fit in the exponent field

* Underflow happens when a negative exponent becomes too
arge (in magnitude) to fit in the exponent field

* One way to reduce the chance of underflow or overflow is to
offer another format that has a larger exponent field

— Double precision — takes two MIPS words



Double precision in MIPS

exponent fraction
sign (11 bit) (52 bit)
[ [
o o
03 52
s| E (exponent) F (fraction)
1 bit 11 bits 20 bits

F (fraction continued)

32 bits



Adding

Add together 2.34 * 103 and 4.56 * 10°

Normalize so both have the larger exponent

e 0.0234*10> +4.56 * 10°
Add significands taking sign of numbers into account
— 4.5834 * 10°

Normalize to a single leading digit

— 4.5834 * 10°



1.000, x 271 +-1.110, x 272
. 0.001, x 2!

1,111, x 22

. 1.011, x 2°2

. 1.000, x 24

. None of the above



What problems could we run into doing this in
binary?
. Added fraction could be longer than 23 bits

. Normalized exponent could be greater than 127 or less than -126

. Shifting fraction to match largest exponent could take more than
23 bits

. More than one of the above



Floats in higher-level languages

C, Java: float, double

JavaScript: numbers are always 64-bit double precision
Rust: f32, f64

Sometimes intermediate values (e.g., x*y in x*y + z) may be
doubles (or larger types!) even when the inputs are all floats



FP Adder Hardware

* Much more complex than integer adder

* Doing it in one clock cycle would take too long
— Much longer than integer operations

— Slower clock would penalize all instructions

* FP adder usually takes several cycles



FP Adder Hardware
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Multiplication

Multiply 2.34 * 103 and 4.56 * 10°

Add together exponents
— 108

Multiply fractions (with appropriate signs)
— 10.6704 * 108

Normalize
— 1.06704 * 10°



1.000, x 271 x=1.110, x 272

. -1.110, x 272
. —1.110, x 272

. —1.110, x 23

. -1.110, x 21



What problems could we run into doing this in
binary floating point?

A. Adding bias in exponent in twice
B. Shifted exponent could be greater than 127 or less than -126
C. Multiplied fraction could be longer than 23 bit

D. More than one of the above



FP Instructions in MIPS

FP hardware is coprocessor 1
— Adjunct processor that extends the ISA

Separate FP registers
— 32 single-precision: $f0, Sf1, ... $f31
— Paired for double-precision: $f0/Sf1, Sf2/$f3

FP instructions operate only on FP reglsters
— Programs generally don’t do integer ops on FP data, or vice versa

FP load and store instructions

— lwcl, 1dcl, swcl, sdcl
« e.g, ldcl $f8, 32($sp)
— Psuedoinstructions are easier to read: |.s, I.d, s.s, s.d




FP Instructions in MIPS

* Single-precision arithmetic
—add.s,sub.s, mul.s,divs
« eg,add.s $f0, $f1, $f6

* Double-precision arithmetic (operates on paired registers)

—add.d, sub.d, mul.d div.d
e eg,mul.d $f4, $f4, $f6



Reading

* Next Lecture: Floating Point/Performance

* Problem Set 7



